
ALGEBRAIC CURVES
EXERCISE SHEET 4

Unless otherwise specified, k is an algebraically closed field.

Exercise 4.1. Show that all local rings of the affine line A1
k are isomorphic to the

same ring R.

Solution 1. Geometrically, this should be clear: the affine line A1
k looks every-

where the same. More concretely, for any two points a, b ∈ A1
k, the translation

τb−a : A1
k → A1

k

t 7→ t+ b− a

is an isomorphism (with inverse τa−b) with τb−a(a) = b. In particular, as an
isomorphism of algebraic varieties induces isomorphisms of local rings, the local
rings at a and b are isomorphic.

Remark. To see that an isomorphism of affine varieties induces and isomorphism
of local rings, you can use the following

• For any morphism of algebraic varieties φ : U → V and any point p ∈ U
there exists an induced map φ̃p : OV,φ(p) → OU,p of local rings.

• This is functorial: for φ : U → V and ψ : V → W and p ∈ U we have

˜(ψ ◦ φ)p = φ̃p ◦ ψ̃φ(p).

• In particular, if φ is an isomorphism, then φ̃p is an isomorphism for all
p ∈ U .

Exercise 4.2. An affine algebraic group is an affine variety G, whose underlying
set is a group, such that the morphisms i : G → G, g 7→ g−1 and m : G × G →
G, (g, h) 7→ gh are polynomial maps. Let V1 = A1

k − {0} and V2 = V (xy − 1).
From the first exercise, we call R the local ring of A1

k at any point.

(1) Show that O(V1) = k[x, x−1] = k[x, y]/(xy − 1).
(2) Construct a morphism V2 → A1

k whose image is V1.
(3) Show that the local ring of V2 at any point is isomorphic to R. Are V2 and

A1
k isomorphic?

(4) Show that V2 can be endowed with a structure of affine algebraic group.

Solution 2.

(1) We clearly have an inclusion k[x, x−1] ↪→ O(V1), because any element
g(x)/xn of k[x, x−1] is by definition a regular function on V1. Let us show
that every regular function is of this form.
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Let f : V1 → k be a regular function. Let {Ui}i be an open cover of V1
and let gi, hi ∈ k[x] be such that hi is non-zero on Ui and f |Ui

= gi/hi for
all i. By applying Exercise 4.5 to A1

k, we in fact obtain gi/hi = gj/hj for all
i, j. As k[x] is a UFD, every fraction has a unique representation in lowest
terms, i.e. there exist g, h ∈ k[x] coprime such that g/h = gi/hi for all i.
In particular, we have h | hi for all i, so that V (h) ⊆ V (hi), and thus

A1
k \ V (h) ⊇

⋃
i

A1
k \ V (hi) ⊇

↑
hi non-zero on Ui

⋃
i

Ui = V1.

Therefore V (h) ⊆ {0}. Up to scaling, we obtain that h = xn for some
n ∈ Z≥0, and thus f(x) = g(x)/xn for all x ∈ V1. Hence we obtain that
the inclusion k[x, x−1] ↪→ O(V1) is surjective, i.e. O(V1) = k[x, x−1].

To conclude, it suffices to show that k[x, x−1] ∼= k[x, y]/(xy− 1). On the
one hand, the morphism

k[x, y] → k[x, x−1]

x 7→ x, y 7→ x−1

has kernel (xy−1) and thus we obtain an induced morphism φ : k[x, y]/(xy−
1) → k[x, x−1], sending p(x, y) + (xy− 1) to p(x, x−1). On the other hand,
the composition

k[x] ↪→ k[x, y] → k[x, y]/(xy − 1)

sends x to x + (xy − 1), which is a unit (with multiplicative inverse given
by y+(xy−1)). Hence by the universal property of localization, we obtain
an induced morphism ψ : k[x, x−1] → k[x, y]/(xy − 1), sending g(x)/xn to
g(x)yn + (xy − 1). It is then straightforward to check that φ and ψ are
mutually inverse.

(2) The projection (v1, v2) 7−→ v1 works. On structure rings, it is given by the
morphism

k[x] → k[x, y]/(xy − 1)

x 7→ x+ (xy − 1).

(3) k[x, x−1] and k[x] are not isomorphic so V2 and A1
k are not isomorphic.

For the question about local rings, consider a point (a, b) ∈ V2. This
corresponds to the maximal ideal (x− a, x− b) of k[x, y]/(xy − 1). Under
the isomorphism k[x, y]/(xy − 1) ∼= k[x, x−1], this maximal ideal corre-
sponds to the maximal ideal (x − a) ⊆ k[x, x−1], and thus the local ring
(k[x, y]/(xy − 1))(x−a,x−b) is isomorphic to k[x, x−1](x−a). By Exercise 4.1,
it suffices to show that k[x, x−1](x−a)

∼= k[x](x−a).
To do so, note that the localisation map ι : k[x] → k[x, x−1] satisfies

ι−1((x− a)) = (x− a), and thus we obtain an induced map on local rings
k[x](x−a) → k[x, x−1](x−a). It is straightforward to see that this is injective.
To see surjectivity, let (g/xm)/(h/xn) be an arbitrary element of the target.
One then has h(a) ̸= 0, and thus (g · xn)/(h · xm) is a well-defined element
of k[x](x−a) mapping to (g/xm)/(h/xn).
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Although this might seem to be complicated algebra on first sight, geo-
metrically it is really straightforward: the localization map k[x] → k[x, x−1]
corresponds to the open inclusion A1

k \ {0} ↪→ A1
k. If a ∈ A1

k \ {0} is any
point, then the local ring at a should only depend on local information
around a, i.e. it should be the same in all open neighborhoods of a. So as
V1 is an open neighborhood of a, the local ring of V1 at a should be the
same as the local ring of A1

k at a.

Remark. The abstract algebraic fact which made the above proof work is
the following: let R be a ring and let S ⊆ R be a multiplicatively closed
subset containing 1. Let also T ⊆ S−1R be a multiplicatively closed subset
containing 1, and define

U :=
{
u ∈ R | ∃s ∈ S :

u

s
∈ T

}
.

Then we have an isomorphism T−1(S−1R)
∼=−→ U−1R given by (r/s)/(r′/s′) 7→

(rs′)/(r′s).
Applying this in the above situation to R = k[x], S = {1, x, x2, . . .} and

T = k[x, x−1]\(x−a) yields U = k[x]\(x−a) and k[x, x−1](x−a)
∼= k[x](x−a).

(4) V2 has a multiplication map given by

m : V2 × V2 → V2

(a, b) · (c, d) 7→ (ac, bd)

which is well-defined as (ac)(bc) = (ab)(cd) = 1, and is clearly polynomial.
The inverse map is

i : V2 → V2

(a, b) 7→ (b, a)

which is well-defined as ba = ab = 1 and also is polyonomial. Note thatm is
commutative and m((a, b), i(a, b)) = (ab, ba) = (1, 1), which is the neutral
element for the multiplication m. In conclusion, this defines a structure of
affine algebraic group on V2.

Exercise 4.3. Let V = V (y2 − x3). Let φ : A1
k → V be the morphism defined by

φ(t) = (t2, t3). From the first exercise, we call R the local ring of A1
k at any point.

(1) Show φ is a bijective morphism, but is not an isomorphism.
(2) Let P ∈ V . Is the local ring of V at P isomorphic to R?

Solution 3. (1) φ is a bijection: there is a set-theoretic inverse ψ : V → A1
k

given by ψ(a, b) := b/a on V \ {(0, 0)} and ψ(0, 0) := 0. However φ
is not an isomorphism, because if it were, then ψ would have to be a
morphism of affine algebraic varieties, but there doesn’t exist any poly-
nomial p(x, y) ∈ k[x, y] such that ψ(a, b) = p(a, b) for all (a, b) ∈ V .
Indeed, if by contradiction p is such a polynomial, then the polynomial
q(x) = p(x2, x3) ∈ k[x] satisfies q(t) = ψ(t2, t3) = t for all t ∈ k, and thus
q(x) = x. But the coefficient of x in p(x2, x3) is 0, contradiction.
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We can also see it on the rings of functions, where φ is induced by the
morphism

k[x, y] → k[x]

x 7→ x2

y 7→ x3.

The kernel is (y2−x3), but it is clearly not surjective, because x is not in the
image. If φ was an isomorphism, the induced map k[x, y]/(y2 − x3) → k[x]
would have to be an isomorphism, contradiction.

(2) The problem of φ failing to be an isomorphism laid at 0 ∈ A1
k, so let us try

to show that actually V1 ∼= V \{(0, 0)} (the precise definition of morphisms
for quasi-affine algebraic varieties will come later, but it should be clear that
the maps appearing should be morphisms for any reasonable definition).
Indeed, ψ|V \{(0,0)} maps (a, b) ∈ V \ {(0, 0)} to b/a ∈ V1, which is a regular
function on V \{(0, 0)}. Hence ψ|V \{(0,0)} : V \{(0, 0)} → V1 is a morphism
of quasi-affine varieties, and it is inverse to φ|V1 : V1 → V \ {(0, 0)}. So we
conclude that indeed V1 ∼= V \ {(0, 0)}.

Although we haven’t showed this yet, we will see later that the local ring
remains the same under passing to an open subset (the proof of point (3)
in Exercise 4.2 already showed this for the open set V1 of A1

k). Therefore,
the local ring of V at any point P ∈ V \ {(0, 0)} is isomorphic to R.

Let us show that this is not the case at P = (0, 0). For an element
p ∈ k[x, y], denote by p its class inside k[x, y]/(y2 − x3) = Γ(V ). The ideal
of (0, 0) inside Γ(V ) is (x, y), so the local ring OP (V ) is given by

OP (V ) =
(
k[x, y]

/
(y2 − x3)

)
(x,y)

.

Denote by m = (x/1, y/1) its maximal ideal. To show that OP (V ) is not
isomorphic to R = k[x](x), we are going to show that m is not principal
(which is enough, as the maximal ideal of R is principal). So assume by
contradiction that m = (p/q) for some p, q ∈ k[x, y]. As x/1, y/1 ∈ m,
there exist a, b, c, d ∈ k[x, y] with b(0, 0) ̸= 0 ̸= d(0, 0) such that

a

b

p

q
=
x

1
c

d

p

q
=
y

1
.

If by contradiction a(0, 0) ̸= 0, then a /∈ (x, y), so a is a unit in OP (V ).
Therefore, we obtain that p/q is a multiple of x/1, which gives m = (x/1).
So in this case we may assume p/q = x/1. But then the second equation
above gives that

dy − cx = 0

and thus dy − cx ∈ (y2 − x3). Therefore, the polynomial d(t2, t3)t3 −
c(t2, t3)t2 ∈ k[t] is 0. Hence we obtain d(t2, t3)t = c(t2, t3) so that in
particular c(0, 0) = 0, i.e. c has no constant term. But then c(t2, t3) is
divisible by t2, i.e we can write c(t2, t3) = t2c̃(t) for some c̃(t) ∈ k[t]. But
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then we obtain d(t2, t3) = tc̃(t) and so d(0, 0) = 0, which contradicts the
fact that d /∈ (x, y).

Therefore, we may assume that a(0, 0) = 0. From the above equations,
we obtain that

ap− xbq = 0

and thus we have

a(t2, t3)p(t2, t3)− t2b(t2, t3)q(t2, t3) = 0.

As neither a nor p have a constant term, we obtain that a(t2, t3)p(t2, t3) is
divisible by t4. But then b(t2, t3)q(t2, t3) is divisible by t2, so in particular
we obtain b(0, 0)q(0, 0) = 0. This contradicts the fact that b, q /∈ (x, y).
In conclusion, the maximal ideal of OP (V ) cannot be principal, while the
maximal ideal of R is, so they can’t be isomorphic.

Remark. The geometric reason why OP (V ) is not isomorphic to the local rings
of A1

k, is that the curve y2−x3 has a singularity at P = (0, 0), i.e. it is not smooth
there. In fact, it has some sort of ’sharp corner’ at P , as the following picture
suggests:

Algebraically, the way one defines what it means for some variety V to be singu-
lar/smooth at a point P ∈ V is through its tangent space. The algebraic analogue
of the tangent space is (the dual of) the k-vector space mP/m

2
P ; this is called the

Zariski tangent space. If the dimension of mP/m
2
P is the same as the dimension of

V , then we say that V is smooth at P (intuitively, it means that V looks like AdimV
k

if we ’zoom in close enough’). If on the other hand we have dimk mP/m
2
P > dimV ,

we say that V is singular at P . Furthermore, by Nakayama’s lemma, the dimen-
sion of mP/m

2
P as a k-vector space is in fact the same as the minimal number

of generators of the ideal mP inside OP (V ). What we showed above is that for
V = V (y2 − x3) and P = (0, 0), the minimal number of generators of mP inside
OP (V ) is at least 2, so

dimk mP/m
2
P > 1 = dimV.

Hence V has a singularity at P , whereas A1
k is smooth at every point.
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Exercise 4.4. Let V = V (Y 2 −X2(X +1)) and x, y the residues of X, Y in Γ(V ).
Let z = y

x
∈ k(V ). Find the poles of z and z2.

Solution 4. Note that

z =
y

x
=
x(x+ 1)

y
,

so the only possible pole is where both x and y are 0, i.e. at (0, 0). For p ∈ k[X, Y ],
denote by p its class in Γ(V ). Assume by contradiction that we can write z = p/q
with q(0, 0) ̸= 0. Then we have

Y q −Xp = 0,

or equivalently, there exists r ∈ k[X, Y ] such that

Y q(X, Y )−Xp(X, Y ) = r(X, Y )(Y 2 −X2(X + 1)).

Plugging in X = 0 gives

Y q(0, Y ) = Y 2r(0, Y ),

so we obtain q(0, 0) = 0, contradiction. Hence z has a pole at (0, 0).

On the other hand, we have z2 = y2

x2 = x2(x+1)
x2 = x + 1. As this has no

denominator, z2 has no poles.

Exercise 4.5.

(1) Prove Corollary 2.9 fom class: Let V be a quasi-affine variety and f, g ∈
O(V ) two regular functions, such that f|U = g|U for some non-empty open
U ⊂ V . Then f = g.

(2) Let V be an affine variety and f ∈ k(V ) a rational function. Show that
f defines a continous function U → k, for some non empty open subset
U ⊂ V . Furthermore f is uniquely determined by this function.

Solution 5. (1) Consider h = f−g ∈ O(V ). As h is continuous, we have that
h−1({0}) ⊆ V is closed, but it also contains U . As V is irreducible, U is
dense, and therefore we must have h−1(0) = V . That is, we have h = 0,
and thus f = g.

(2) V is irreducible so Γ(V ) is integral and we can write f as g/h with g, h ∈
Γ(V ). Then the zero set of h is a closed subset of V and we can take U
to be its complement. The only Zariski closed subsets of k are ∅, k and
finite sets of points. Checking the continuity on singletons is enough. Using
translations, it suffices to check at 0. Now f−1(0) is Zariski closed since
f−1(0) = V (g) ∩ U is Zariski closed.

Using projective space: We can see f as a function V → P1. Then,
f−1(∞) is closed and its complement is the open subset U .

Let f, g ∈ k(V ) and write f = a/b and g = c/d for some a, b, c, d ∈ Γ(V ).
Assume that f, g define continuous functions F : U1 → k resp. G : U2 → k,
and that there exists a non-empty open subsets W ⊆ U1 ∩ U2 such that
F |W = G|W . By further shrinking W , we may suppose that b, d are non-
zero on W . By construction and using point (1), we have F (x) = a(x)/b(x)
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and G(x) = c(x)/d(x) for all x ∈ W . As F |W = G|W , we obtain that
(ad)|W = (bc)|W . By point (1), this gives ad = bc, so we obtain f = g.

Exercise 4.6. * Let F ∈ k[x, y] be an irreducible polynomial of degree at most
2. Show that V (F ) is either isomorphic to V1 = A1

k or V2 = V (xy − 1). Specify
in which case it is isomorphic to V1 (resp. V2). (Hint: Use linear changes of
coordinates to eliminate monomials in F )

Solution 6. A degree 1 irreducible polynomial is of the form F = ax+ by+ c with
a or b ̸= 0. Assume a ̸= 0. Then we have the following surjective morphism

k[x, y] → k[x]
x 7→ −a−1(bx+ c)
y 7→ x

whose kernel is (F ). Thus V (F ) is isomorphic to A1
k.

Now suppose F is an irreducible polynomial of degree 2 in k[x, y]. We can write

F (x, y) = ax2 + by2 + cxy + dx+ ey + f = 0

• if a = 0 and b = 0, then c ̸= 0. Using

cxy + dx+ ey = c(x+
e

c
)(y +

d

c
)− ed

we get F = cXY + f ′ with X = x + e
c
, Y = y + d

c
and f ′ = f − ed. Then

F irreducible implies f ′ ̸= 0. If we write X ′ = c
f ′ , then F = f ′XY − f ′. It

is then clear that V (F ) = V (XY − 1).
Note that these affine changes of variables are admitted because they

induce isomorphism of rings.
• Up to changing x and y, we may assume a ̸= 0. Then writing

F (x, y) = ax2 + (cy + d)x+ by2 + ey + f,

we may complete the square and replace X =
√
a(x + a−1(cy + d)/2) to

obtain F (X, y) = X2 + b′y2 + e′y + f ′.
– If b′ = 0 we must have e′ ̸= 0, otherwise F would be reducible. Hence

we can replace Y = e′y + f ′ and obtain F (X, Y ) = X2 + Y . But then
use the isomorphism

k[X, Y ]/(X2 + Y ) → k[X]

X 7→ X

Y 7→ −X2

to conclude that V (F ) ∼= A1
k.

– If b′ ̸= 0, we can again complete the square and assume e′ = 0. As
X2 + b′y2 is reducible over an algebraically closed field (we can write
X2 + b′y2 = (X + i

√
′by)(X − i

√
b′y)), we then must have f ′ ̸= 0. Up

to scaling X and y we may assume that e′ = f ′ = −1, so we are left
with F (X, y) = X2 − y2 − 1. Factoring X2 + y2 = (X + y)(X − y)
and replacing u = X + y and v = X − y, we obtain F (u, v) = uv − 1.
Therefore, we obtain again V (F ) ∼= V2.
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