ALGEBRAIC CURVES
EXERCISE SHEET 4

Unless otherwise specified, k is an algebraically closed field.

Exercise 4.1. Show that all local rings of the affine line A} are isomorphic to the
same ring R.

Solution 1. Geometrically, this should be clear: the affine line A} looks every-
where the same. More concretely, for any two points a,b € A}, the translation

Tb,aiAi%A}c
t—t+b—a

is an isomorphism (with inverse 7,-,) with 7,_,(a) = b. In particular, as an
isomorphism of algebraic varieties induces isomorphisms of local rings, the local
rings at a and b are isomorphic.

Remark. To see that an isomorphism of affine varieties induces and isomorphism
of local rings, you can use the following

e For any morphism of algebraic varieties p: U — V and any point p € U
there exists an induced map @,: Oy, — Oy, of local rings.
e This is functorial: for p: U — V and ¢¥: V. — W and p € U we have

(w o gp)p = §5p © w@(p)'
e In particular, if ¢ is an isomorphism, then ¢, is an isomorphism for all
peU.

Exercise 4.2. An affine algebraic group is an affine variety G, whose underlying
set is a group, such that the morphisms i : G — G, g+~ g tand m : G x G —
G, (g,h) — gh are polynomial maps. Let V; = Al — {0} and V, = V(zy — 1).
From the first exercise, we call R the local ring of A} at any point.

(1) Show that O(V}) = k[z, 7] = k[z, y]/(zy — 1).

(2) Construct a morphism V5 — A} whose image is V.

(3) Show that the local ring of V5 at any point is isomorphic to R. Are V5 and
A} isomorphic?

(4) Show that V5 can be endowed with a structure of affine algebraic group.

Solution 2.

(1) We clearly have an inclusion k[z,z7'] < O(V}), because any element
g(z)/x™ of k[x,x'] is by definition a regular function on Vi. Let us show

that every regular function is of this form.
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Let f: Vi — k be a regular function. Let {U;}; be an open cover of V}
and let g;, h; € k[z] be such that h; is non-zero on U; and f|y, = g;/h; for
all i. By applying Exercise 4.5 to A}, we in fact obtain g;/h; = g;/h; for all
i,7. As k[x] is a UFD, every fraction has a unique representation in lowest
terms, i.e. there exist g, h € k[z] coprime such that g/h = g;/h; for all i.
In particular, we have h | h; for all 4, so that V' (h) C V' (h;), and thus

A\ V(h DLPM\V DLﬁJ Vi.

h; non-zero on U; ‘

Therefore V(h) C {0}. Up to scaling, we obtain that h = 2" for some
n € Zso, and thus f(x) = g(x)/a™ for all x € Vj. Hence we obtain that
the inclusion k[z, 7] < O(V}) is surjective, i.e. O(V}) = k[z, z71].

To conclude, it suffices to show that k[x, 27| = k[z, y]/(xy —1). On the
one hand, the morphism

klz,y) — klz, 27
x»—>x,yv—>x_1

has kernel (xy—1) and thus we obtain an induced morphism ¢: k[z, y]/(xy—
1) = k[x, 27!, sending p(x,y) + (zy — 1) to p(z,z~'). On the other hand,
the composition

klz] = klz,y] — klz,y]/(zy — 1)

sends x to x + (xy — 1), which is a unit (with multiplicative inverse given
by y+ (xy —1)). Hence by the universal property of localization, we obtain
an induced morphism : k[z,z7!] — klx,y]/(xy — 1), sending g(x)/x™ to
g(x)y" + (xy — 1). It is then straightforward to check that ¢ and v are
mutually inverse.

The projection (vq,vy) — vy works. On structure rings, it is given by the
morphism

kla] = K[z, yl/(zy — 1)
r— 4+ (zy—1).

k[z, 27| and k[z] are not isomorphic so V3 and A} are not isomorphic.

For the question about local rings, consider a point (a,b) € V5. This
corresponds to the maximal ideal (z — a,x — b) of k[z,%]/(xy — 1). Under
the isomorphism k[x,y]/(xy — 1) = k[zr,z!], this maximal ideal corre-
sponds to the maximal ideal (z — a) C k[z,z7'], and thus the local ring
(k[z,y/(xy — 1)) G=az—p is isomorphic to k[z,2"], a). By Exercise 4.1,
it suffices to show that k[z, 2™ —q) = k(2] (1—a).

To do so, note that the localisation map ¢: k[x] — k[z,z7!] satisfies
17 ((z — a)) = (z — a), and thus we obtain an induced map on local rings
klx)(s—a) = K[z, 27| (s—q). It is straightforward to see that this is injective.
To see surjectivity, let (g/x™)/(h/x™) be an arbitrary element of the target.
One then has h(a) # 0, and thus (g-2™)/(h-2™) is a well-defined element

of Kiee-s) mapping to (g/27) (h/2").



Although this might seem to be complicated algebra on first sight, geo-
metrically it is really straightforward: the localization map k[z] — k[z, 27!]
corresponds to the open inclusion A} \ {0} < A}. If a € A} \ {0} is any
point, then the local ring at a should only depend on local information
around a, i.e. it should be the same in all open neighborhoods of a. So as
Vi is an open neighborhood of a, the local ring of V; at a should be the
same as the local ring of A} at a.

Remark. The abstract algebraic fact which made the above proof work is
the following: let R be a ring and let S C R be a multiplicatively closed
subset containing 1. Let also 7' C S~'R be a multiplicatively closed subset
containing 1, and define

U::{ueRHseS: %ET}.

Then we have an isomorphism 7' (S~ R) —s U~ R given by (r/s)/(1'/s')
(rs')/(r's).

Applying this in the above situation to R = k[x], S = {1,z,2?,...} and
T = klz, 27\ (z—a) yields U = k[z]\ (z—a) and k[z, 27 p—a) = k2] (@—a)-

(4) V4 has a multiplication map given by

m: Vo x Vo =V,
(a,b) - (c,d) — (ac, bd)

which is well-defined as (ac)(bc) = (ab)(cd) = 1, and is clearly polynomial.
The inverse map is

1: Vo —> Vs
(a,b) = (b, a)

which is well-defined as ba = ab = 1 and also is polyonomial. Note that m is
commutative and m((a,b),i(a,b)) = (ab,ba) = (1,1), which is the neutral
element for the multiplication m. In conclusion, this defines a structure of
affine algebraic group on V5.

Exercise 4.3. Let V = V(y? — z®). Let ¢ : A} — V be the morphism defined by
o(t) = (t*,t%). From the first exercise, we call R the local ring of A} at any point.

(1) Show ¢ is a bijective morphism, but is not an isomorphism.
(2) Let P € V. Is the local ring of V' at P isomorphic to R?

Solution 3. (1) ¢ is a bijection: there is a set-theoretic inverse ¢: V — A}
given by v¥(a,b) = b/a on V \ {(0,0)} and (0,0) := 0. However ¢
is not an isomorphism, because if it were, then ¢ would have to be a
morphism of affine algebraic varieties, but there doesn’t exist any poly-
nomial p(x,y) € k[z,y] such that ¢¥(a,b) = p(a,b) for all (a,b) € V.
Indeed, if by contradiction p is such a polynomial, then the polynomial
q(z) = p(x?, ) € k[z] satisfies q(t) = (t?,¢3) =t for all t € k, and thus
q(x) = x. But the coefficient of z in p(x?, 23) is 0, contradiction.
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We can also see it on the rings of functions, where ¢ is induced by the
morphism

klz,y] — klz]
x>z’
Y 2>

The kernel is (y*>—2?), but it is clearly not surjective, because x is not in the
image. If ¢ was an isomorphism, the induced map k[x,y]/(y? — 23) — k[z]
would have to be an isomorphism, contradiction.

The problem of ¢ failing to be an isomorphism laid at 0 € A}, so let us try
to show that actually V; = V'\{(0,0)} (the precise definition of morphisms
for quasi-affine algebraic varieties will come later, but it should be clear that
the maps appearing should be morphisms for any reasonable definition).
Indeed, 9|y {(0,0y maps (a,b) € V'\ {(0,0)} to b/a € V4, which is a regular
function on V'\ {(0,0)}. Hence ¥|v\(0,01: V' \ {(0,0)} — V4 is a morphism
of quasi-affine varieties, and it is inverse to @[y, : V3 — V' \ {(0,0)}. So we
conclude that indeed V; = V'\ {(0,0)}.

Although we haven’t showed this yet, we will see later that the local ring
remains the same under passing to an open subset (the proof of point (3)
in Exercise 4.2 already showed this for the open set V; of A}). Therefore,
the local ring of V' at any point P € V' \ {(0,0)} is isomorphic to R.

Let us show that this is not the case at P = (0,0). For an element
p € klz,y], denote by p its class inside k[z,y]/(y? — 23) = T(V). The ideal
of (0,0) inside I'(V') is (%, 7), so the local ring Op(V) is given by

Op(V) = (Mrl/ (2 —a))

Denote by m = (z/1,7/1) its maximal ideal. To show that Op(V) is not
isomorphic to R = k[z](), we are going to show that m is not principal
(which is enough, as the maximal ideal of R is principal). So assume by
contradiction that m = (p/q) for some p,q € klz,y]. As T/1,7/1 € m,
there exist a,b,¢,d € klz,y] with b(0,0) # 0 # d(0,0) such that

SRASTRSIES|
=l =

Qll o <l Ql

If by contradiction a(0,0) # 0, then @ ¢ (Z,y), so a is a unit in Op(V).
Therefore, we obtain that p/q is a multiple of Z/1, which gives m = (z/1).
So in this case we may assume /g = /1. But then the second equation
above gives that

dy —cx =0

and thus dy — cx € (y* — 2®). Therefore, the polynomial d(t?, %)t —

c(t*,t*)t* € k[t] is 0. Hence we obtain d(t?,t3)t = c(t?,¢%) so that in

particular ¢(0,0) = 0, i.e. ¢ has no constant term. But then c(¢?,¢?) is

divisible by #?, i.e we can write c(t?,t%) = t*¢(t) for some ¢(t) € k[t]. But
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then we obtain d(t?,t%) = t¢(t) and so d(0,0) = 0, which contradicts the
fact that d ¢ (7, 7).

Therefore, we may assume that a(0,0) = 0. From the above equations,
we obtain that

ap — xbg =0
and thus we have
a(t?, )p(t*, t3) — 2b(t?, t3)q(t*, 1*) = 0.

As neither a nor p have a constant term, we obtain that a(t?,¢3)p(t?,t3) is
divisible by t*. But then b(t?,t3)q(t?,t®) is divisible by 2, so in particular
we obtain b(0,0)q(0,0) = 0. This contradicts the fact that b,q ¢ (Z,7).
In conclusion, the maximal ideal of Op(V') cannot be principal, while the
maximal ideal of R is, so they can’t be isomorphic.

Remark. The geometric reason why Op(V') is not isomorphic to the local rings
of A}, is that the curve y* — z® has a singularity at P = (0,0), i.e. it is not smooth
there. In fact, it has some sort of 'sharp corner’ at P, as the following picture
suggests:

y =x

Y

Algebraically, the way one defines what it means for some variety V' to be singu-
lar /smooth at a point P € V' is through its tangent space. The algebraic analogue
of the tangent space is (the dual of) the k-vector space mp/m%; this is called the
Zariski tangent space. If the dimension of mp/m% is the same as the dimension of
V, then we say that V is smooth at P (intuitively, it means that V looks like A¢imV
if we zoom in close enough’). If on the other hand we have dim; mp/m?% > dim V,
we say that V' is singular at P. Furthermore, by Nakayama’s lemma, the dimen-
sion of mp/m% as a k-vector space is in fact the same as the minimal number
of generators of the ideal mp inside Op(V). What we showed above is that for
V =V(y* — 23) and P = (0,0), the minimal number of generators of mp inside
Op(V) is at least 2, so

Hence V has a singularity at P, whereas A} is smooth at every point.
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Exercise 4.4. Let V = V(Y? — X?(X + 1)) and z,y the residues of X, Y in T'\(V).
Let z = ¥ € k(V). Find the poles of z and z?.

Solution 4. Note that

1
Z:g:x(:c—l— )

Zz )
so the only possible pole is where both = and y are 0, i.e. at (0,0). For p € k[X,Y],
denote by p its class in I'(V'). Assume by contradiction that we can write z = p/q
with ¢(0,0) # 0. Then we have

Y

Yq—Xp=0,
or equivalently, there exists r € k[X, Y] such that
Ye(X,Y) = Xp(X,Y) =r(X,Y)(Y? - X}(X +1)).
Plugging in X = 0 gives
Yq(0,Y) =Y?r(0,Y),
so we obtain ¢(0,0) = 0, contradiction. Hence z has a pole at (0,0).

On the other hand, we have 2?2 = z—z = % = x + 1. As this has no
denominator, 22 has no poles.

Exercise 4.5.

(1) Prove Corollary 2.9 fom class: Let V' be a quasi-affine variety and f, g €
O(V') two regular functions, such that fiy = gy for some non-empty open
UcCV. Then f=g.

(2) Let V be an affine variety and f € k(V') a rational function. Show that
f defines a continous function U — k, for some non empty open subset
U C V. Furthermore f is uniquely determined by this function.

Solution 5. (1) Consider h = f—g € O(V). As h is continuous, we have that
h=1({0}) C V is closed, but it also contains U. As V is irreducible, U is
dense, and therefore we must have h=1(0) = V. That is, we have h = 0,
and thus f = g.

(2) V is irreducible so I'(V) is integral and we can write f as g/h with g,h €
['(V). Then the zero set of h is a closed subset of V' and we can take U
to be its complement. The only Zariski closed subsets of k are &, k and
finite sets of points. Checking the continuity on singletons is enough. Using
translations, it suffices to check at 0. Now f~1(0) is Zariski closed since
f710) =V (g) NU is Zariski closed.

Using projective space: We can see f as a function V. — P!. Then,
f7Y(o0) is closed and its complement is the open subset U.

Let f,g € k(V') and write f = a/b and g = ¢/d for some a,b,c,d € I'(V).
Assume that f, g define continuous functions F': Uy — k resp. G: Uy — k,
and that there exists a non-empty open subsets W C U; N U, such that
F|w = G|w. By further shrinking W, we may suppose that b, d are non-

zero on W. By construction and using point (1), we have F(z) = a(x)/b(x)
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and G(z) = ¢(x)/d(z) for all z € W. As F|w = G|w, we obtain that
(ad)|w = (be)|w. By point (1), this gives ad = bc, so we obtain f = g.

Exercise 4.6. * Let F' € k[z,y] be an irreducible polynomial of degree at most
2. Show that V(F') is either isomorphic to V; = A} or V5 = V(xy — 1). Specify
in which case it is isomorphic to Vj (resp. V). (Hint: Use linear changes of
coordinates to eliminate monomials in F')

Solution 6. A degree 1 irreducible polynomial is of the form F' = ax + by + ¢ with
a or b # 0. Assume a # 0. Then we have the following surjective morphism
klz,y] — klz]
r = —a Y(br +c)
Yy —x
whose kernel is (F'). Thus V(F) is isomorphic to Aj.

Now suppose F is an irreducible polynomial of degree 2 in k[z,y]. We can write
F(z,y) =ar* +by* +cxy +dr +ey+ f =0

e if a =0 and b = 0, then ¢ # 0. Using
e d
cxy+dx+ey:c(x+z)(y+z)—ed
we get 1= cXY + f with X =2 + ¢, Y:y+g and f' = f —ed. Then
F irreducible implies f’ # 0. If we write X' = %, then F'= f'XY — . It
is then clear that V(F) = V(XY —1).
Note that these affine changes of variables are admitted because they
induce isomorphism of rings.
e Up to changing x and y, we may assume a # 0. Then writing

F(x,y) = ax® + (cy + d)x + by* + ey + f,
we may complete the square and replace X = \/a(z + a !(cy + d)/2) to
obtain F(X,y) = X2 +0y* +cy + f.

— If ¥ = 0 we must have €’ # 0, otherwise I’ would be reducible. Hence
we can replace Y = ¢’y + f’ and obtain F(X,Y) = X?+ Y. But then
use the isomorphism

kX, Y]/ (X?+Y) — k[X]
X=X
Y = —X?

to conclude that V(F) = A].

— If v/ # 0, we can again complete the square and assume ¢ = 0. As
X? + V'y? is reducible over an algebraically closed field (we can write
X2 +0y? = (X +ivVby) (X —iv/'y)), we then must have f’ # 0. Up
to scaling X and y we may assume that ¢/ = f/ = —1, so we are left
with F(X,y) = X? — y?> — 1. Factoring X% +¢? = (X + y)(X — y)
and replacing © = X + y and v = X — y, we obtain F(u,v) = uv — 1.
Therefore, we obtain again V (F') = V5.
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